Pandian Journal of Mathematical Sciences

28

Pandian Journal of Mathematic A Peer Reviewed Journal

Volume 1, Issue 1, July 2022 E-ISSN: 2583-8822

Even-Odd Prime Harmonious Graphs

Dr R. S. Ramkumar, Head & Assistant Professor, Department of Mathematics, Sri S.R.N.M. College, Sattur, Virudhunagar, Tamil Nadu, India.

ORCiD: https://orcid.org/0000-0002-1479-0635

Abstract

The paper considers finite and undirected simple connected graphs. Usually, graph labeling is an assignment of integers to the vertices or edges in the method. Naturally, Graphs arose in the study of Graham and Slaone Modular versions of additive based problems. Hence, the researcher have introduced Even-Odd Prime Harmonious Labeling of Graphs and I prove that the Path P_n where n is odd, Star $K_{1,n}$ and Comb graph P_n . K_1 , n is even, are even-odd harmonious graphs. By the use of even-odd prime harmonious labeling concepts, one can find out the significance of even-odd prime harmonious graphs.

Keywords: Even-Odd Prime Harmonious Labeling, Prime Harmonious Labeling and Even-Odd Harmonious Labeling.

I. Introduction:

In this paper, consider finite, undirected simple connected graphs. A graph labeling is an assignment of integers to the vertices or edges or both subject to the conditions. Graph Labeling were first introduced late in the 1960's. Harmonious Graphs naturally arose in the study by Graham and Slaone by Modular versions of additive base problems. The symbols V (G) and E (G) denote the vertex set and edge set of a graph.

2. Preliminaries

We present some known definition and results related to labeling of a graph for ready reference to go through the work presented in this paper.

Definition 2.1. [1] If the values are assigned to the vertices with the certain condition(s), then it is known as graph labeling.

Definition 2.2. [6] A graph G is said to be a **harmonious graph** if there exist an injection map $f:V(G) \to \{0, 1, ..., 2q-1\}$ such that the induced function $f^+: E(G) \to \{0, 1, ..., 2q-1\}$ defined by $f^+(uv) = (f(u) + f(v)) \pmod{(q-1)}$ is a bijection and f is said to be **harmonious labelling** of G.

Definition 2.3. [1] The **even-odd harmonious labeling** of a graph G with p vertices and q edges is an injection $f: V(G) \to \{1, 3, 5, ..., 2p + 1\}$ such that when each edge (u, v) is assigned the label $[f(u) + f(v)] \pmod{2q}$ the resulting edge labels are $\{0, 2, 4, ..., 2(q - 1)\}$. A graph which admits an even-odd harmonious labeling is called an **even-odd harmonious graph**.

Definition 2.4. [3] Let G be a graph with q edges. A function f is called prime **harmonious** labeling of a graph G if $f: V(G) \rightarrow \{0, 1, 2, ..., 2q - 1\}$ is injective and the induced

Be-Ecofriendly Save Trees Save Life

Pandian Journal of Mathematical Sciences

A Peer Reviewed Journal

Volume 1, Issue 1, July 2022

E-ISSN: 2583-8822

29

function f^+ : $E(G) \to \{0, 1, 2, ..., 2q\}$ defined by f(uv) = GCD(f(u), f(v)) = 1 and $f(e = uv) = (f(u) + f(v)) \pmod{(q)}$ is bijective. A graph which admits prime harmonious labeling is called a **prime harmonious graph.**

3. EVEN-ODD HARMONIOUS PRIME HARMONIOUS LABELING

Definition 3.1. Let G be a graph with p vertices and q edges. A function f is called an **even-odd prime harmonious labelling** of a graph G if $f:V(G) \to \{1,3,5,...,2p+1\}$ is injective and the induced function $f^+: E(G) \to \{0,2,...,2q\}$ defined by $f^+(uv) = f(e = uv) = (f(u) + f(v))(mod(2q + 2))$ is bijective and G.C.D(f(u), f(v)) = 1. A graph which admits even-odd prime harmonious labeling is called an **even-odd prime harmonious graph.**

Theorem 3.2. The Path P_n where n is odd is an even-odd prime harmonious graph.

Proof.

Let $u_1, u_2, ..., u_n$ be the vertices of the path P_n and $e_1, e_2, ..., e_{n-1}$ be the edges of P_n where n is odd.

Define
$$f: V(P_n) \to \{1, 3, ..., 2n - 1\}$$
 given by $f(u_{i+1}) = 2i + 1, 0 \le i \le n - 1$

Now,
$$GCD(f(u_{i+1}), f(u_{i+2})) = GCD(2i+1, 2i+3) = 1, 0 \le i \le n-2$$

Then, f induces the edge labelling $f^+: E(P_n) \to \{0,2,...,2n\}$ by $f^+(e_{i+1}(=u_{i+1}u_{i+2})) = (2i+1+2i+3) \pmod{(2n)}$ for $0 \le i \le n-2$ which is bijective.

Hence, the Path P_n where n is odd is an even-odd prime harmonious graph.

Theorem 3.3. The $Star K_{1,n}$ is an even-odd prime harmonious graph.

Proof.

Let $u_1, u_2, ..., u_{n+1}$ be the vertices of the path $K_{1,n}$ and $e_1 (= u_1 u_2), e_2 (= u_1 u_3), ..., e_n (= u_1 u_{n+1})$ be the edges of $K_{1,n}$.

Define
$$f: V(K_{1,n}) \to \{1,3,...,2n+1\}$$
 given by $f(u_{i+1}) = 2i+1, 0 \le i \le n-1$

Now,
$$GCD(f(u_1), f(u_{i+2})) = GCD(1, 2i + 3) = 1, 0 \le i \le n - 1$$

Then, f induces the edge labelling $f^+: E(K_{1,n}) \to \{0,2,...,2n\}$ by

$$f^+(e_{i+1}(=u_1u_{i+2})) = (1+2i+3) \pmod{(2n)}$$
 for $0 \le i \le n-2$ which is bijective.

Hence, the $Star K_{1,n}$ is an even-odd prime harmonious graph.

Theorem 3.4. Every Comb graphs P_n . K_1 where $n = 2^m$ and an even-odd prime harmonious graph is.

Proof.

Let $u_1, u_2, ..., u_n$ be the vertices of the path P_n in P_n . K_1 and let $v_1, v_2, ..., v_n$ be the vertices adjacent to the vertices of each vertex of the path P_n in P_n . K_1 and $e_1, e_2, ..., e_{2n-1}$ be the edges of P_n . K_1 .

Define
$$f: V(P_n, K_1) \to \{1, 3, ..., 2n - 1\}$$
 given by $f(u_{i+1}) = 2i + 1$, $0 \le i \le n - 1$ and $f(v_{i+1}) = 2i + 1$, $0 \le i \le n - 1$.

Now, we have
$$GCD(f(u_{i+1}), f(u_{i+2})) = GCD(2i+1, 2i+3) = 1, 0 \le i \le n-2$$
 and $GCD(f(v_{i+1}), f(v_{i+2})) = GCD(2n+2i+1, 2n+2i+3) = 1, 0 \le i \le n-2$

Be-Ecofriendly Save Trees Save Life

Pandian Journal of Mathematical Sciences

A Peer Reviewed Journal

30

Volume 1, Issue 1, July 2022 E-ISSN: 2583-8822

Then, f induces the edge labeling f^+ : $E(P_n, K_1) \to \{0, 2, ..., 2n\}$ by $f^+(e_{i+1}(=u_{i+1}u_{i+2})) = (2i+1+2i+3) \pmod{(4n)}$ for $0 \le i \le n-2$ and $f^+(e_{i+1}(=v_{i+1}v_{i+2})) = (2i+1+2i+3) \pmod{(4n)}$ which is bijective.

Hence, the Comb graph P_n . K_1 where $n = 2^m$ is an even-odd prime harmonious graph.

Theorem 3.2. C_n . K_1 where n is odd is an even-odd prime harmonious graph.

Proof.

Let $u_1, u_2, ..., u_n$ be the vertices of the cycle C_n in C_n . K_1 and let u_{n+1} be the vertices adjacent to a vertex of u_n of the cycle C_n in C_n . K_1 and $e_1, e_2, ..., e_{n+1}$ be the edges of C_n .

Define
$$f: V(C_n, K_1) \to \{1, 3, ..., 2n + 1\}$$
 given by $f(u_{i+1}) = 2i + 1, 0 \le i \le n$

Now,
$$GCD(f(u_{i+1}), f(u_{i+2})) = GCD(2i+1, 2i+3) = 1, 0 \le i \le n-1$$

Then, f induces the edge labelling f^+ : $E(C_n, K_1) \to \{0, 2, ..., 2n\}$ by $f^+(e_{i+1}(=u_{i+1}u_{i+2})) = (2i + 1 + 2i + 3) \pmod{(2n+4)}$ for $0 \le i \le n-1$ which is bijective.

Hence, C_n . K_1 where n is odd is an even-odd prime harmonious graph.

4. CONCLUSION

Hence, by using the even-odd prime harmonious labeling concepts, one can find out the even-odd prime harmonious graphs.

References

- [1] N. Adalin Beatress and P.B.Sarasja, Even-Odd Harmonious Graphs.
- [2] J.A.Bondy and U.S.R.Murthy, Graph Theory with Applications, Macmillan, London, 1976.
- [3] P.Deepa, S.Uma Maheswari and K.Indirani, Prime Harmonious Labeling of Some New Graphs, *IOSR-JM*, Volume 12, Issue 5 Ver. IV (Sep. Oct.2016), PP 57-61.
- [4] B.Gayathri and D.Muthuramakrishnan, Some results on k-even sequential harmonious labeling of graphs, *Elixir Appl. Math.* 47 (2012) 9054-9057.
- [5] J.A.Gallian, A dynamic survey of graph labeling, *The electronics J. of Combinatorics*, 16, 2009
- [6] B.Liu and X.Zhang, On harmonious labeling of graphs, *Ars. Combin.*, 36, 1993, pp. 315, 326.

Data Availability

The data used to support the findings of this study are from other scholarly papers for the simulation. The papers are properly cited in this article.

Author Contribution Statement: NIL.

Author Acknowledgement: NIL.

Author Declaration: I declare that there is no competing interest in the content and authorship of this scholarly work.

The content of the article is licensed under https://creativecommons.org/licenses/by/4.0/ International License.

Be-Ecofriendly Save Trees Save Life